CROSS-LINGUISTIC INFLUENCE AND OBSTRUENT SEQUENCE PERCEPTION IN SPOKEN, WHISPERED, AND NOISY SPEECH

by Nassim Mahdinazhad Sardhaei & Tristan Czarnecki-Verner* sardhaei@leibniz-zas.de, triver@amu.edu.pl

UNIVERSITY

Poznań

INTRODUCTION

- Whispered speech is close-contact speech
- It occurs across many cultures and human languages
- Is characterized by several acoustic differences from modal speech
 - Lack of F0
 - Reduced speech signal amplitude
- No language uses whispering as the default mode during communciation (Cirillo & Todt, 2005)

BACKGROUND

- Previous studies have examined the prosodic patterns of whispered speech production and influences on spectral characteristics of voiceless consonants (Grabe, 1998; Niebuhr, 2008; Niebuhr et al., 2012, Żygis et al., 2017).
- Few studies investigated consonant perception in whispered speech
- And <u>fewer have investigated whispered consonant</u> <u>perception in multilinguals</u>
- Language-specific phonotactic probabilities are expected to interfere with consonant sequence perception in an L2/L3 (Kilpatrick et al., 2019)
- Whispered speech also postpones lexical access via waitand-see processing (Hendrickson & Ernest, 2022).

RESEARCH QUESTIONS & HYPOTHESES

- Q1. How do phonation mode (whispered, modal speech) and noise (clean speech, noise-masked speech) influence multilingual perception of obstruent sequences?
- H1. Whispered and noisy modes will decrease intelligibility and increase response times linked with lower signal-to-noise ratio (Shojaei et al., 2016)
- Q2. Are certain obstruent sequences more difficult to perceive across phonation modes or in noise (e.g. /vzd/ vs /fst/ vs /psk/ vs /dʒd/, etc.)?
- H2. <u>There will be variation in accuracy/response time across consonant sequences</u>, since perception of obstruents in noise depends on the place of articulation, vowel context, and interaction between voicing and manner of articulation (Alwan, Jiang, & Chen, 2011)
- Q3. Does language background (L1/L2/L3) influence perception of obstruent sequences in a given language?
- H3. Consonant sequences present in L2/L3 but not in L1 will have lower accuracy and longer response times than sequences shared between L1 and L2/L3

METHODOLOGY

PARTICIPANTS (PROJECTED)

- L1 Polish, L2 English, L3 Norwegian (n = 40)
- 1 Polish, L2 English (n = 40)
- 1 Azerbaijani, L2 Farsi, L3 English (n = 40)
- L1 Farsi, L2 English (n = 40)

STIMULI

- Two-word phrases generated for an upwards of <u>25 unique obstruent sequences</u> and <u>4 conditions</u> per language
- Speech modes:
 - Modal (M), noisy modal (NM),
 whispered (W), noisy whispered (NW)
- Consonant clusters across word boundaries, since not all languages allow complex obstruent sequences within words (e.g., #CCCV...)
- Consonant sequences structures:
 - 1C: V#CV
 - o 2C: VC#CV / V#CCV
 - 3C: VCC#CV / VC#CCV

<u> PRECORDINGS</u>

- Polish, English and Norwegian stimuli were produced by a functionally trilingual Polish (L1), English,
 Norwegian speaker (male, mid fifties)
- Azerbaijani, Farsi, and English stimuli to be recorded by a functionally trilingual speaker as well
- Spoken and whispered word tokens were serially recorded in several sessions
 - Shure SM-35 unidirectional cardioid head-worn condenser microphone (~3 cm diagonally away from speaker's mouth)
 - Marantz PMD620 portable solidstate recorder. All audio files were recorded as .wav files at 48 kHz (24-bit)
- Noisy conditions (NM, NW) were masked by 55 Hz of pink noise

PERCEPTUAL EXPERIMENTS

- 2-alternative forced choice speech identification task
- Randomized trial order per participant, randomized position of correct response per trial
- Language experiments designed in PsychoPy, hosted on Pavlovia

RESULTS & ANALYSIS

- Mean accuracy (%) & response times (ms) per trial
- Analysis using GLMM approach (see Jörges, 2021)
- GLMs:
 - MEAN ACC ~ CCSeq * mode + CCSeq *
 LangGroup + (1 | Participant) + (1 | Phrase)
 - RT ~ CCSeq * mode + CCSeq * LangGroup + (1 | Participant) + (1 | Phrase)

EXPERIMENT SAMPLES

ENGLISH VERSION

POLISH VERSION

DISCUSSION

- Data collection IN PROGRESS for L1 Polish, L2 English
- To be collected:
 - L1 Polish, L2 English, L3 Norwegian
 - o L1 Azerbaijani, L2 Farsi, L3 English
 - ∘ L1 Farsi, L2 English
- Possible expansion to include other subtractive groups
 I.e., L1 Norwegian, L2 English; L1 English
- The English version of this experiment can be used as a baseline to compare across any number of language backgrounds that include English, e.g.:
 - o L1 Japanese, L2 English
 - ∘ L1 English L2 French, L3 Chinese
 - L1 Ukrainian, L2 Russian, L3 English, etc.

REFERENCES

ACKNOWLEDGEMENTS

RESEARCH PRESENTED ON THIS POSTER HAS BEEN A RESULT OF A PROJECT: OPUS-19-HS (UMO-2020/37/B/HS2/00617) CLIMAD "CROSS-LINGUISTIC INFLUENCE IN MULTILINGUALISM ACROSS DOMAINS: PHONOLOGY AND SYNTAX" FINANCED BY THE NATIONAL SCIENCE CENTRE, POLAND.

SEE OUR WEBSITE FOR MORE:

