

Adam Mickiewicz University, Poznań

Faculty of English

From a multilingual perspective: Cross-linguistic influence in the acquisition of L3 phonetics and phonology

Magdalena Wrembel magdala@amu.edu.pl

NNL2P 2023, Trondheim

wa.amu.edu.pl

Dynamic nature of multilingualism

Introduction to L3 phonological acquisition

Cross-linguistic influence

Research insights

Corpus & pedagogical implications

Introduction

- Complex linguistic landscape of today
 - Multilingualism as a norm
- Multilingual acquisition a dynamic and diversified process
- New insights into language learning beyond investigations into the first (L1) and second language (L2) (Flynn et al. 2004)
- A growing body of studies into the acquisition of third language (L3) phonetics & phonology (Wrembel & Cabrelli Amaro 2018)

Dynamics of multilingualism

- All languages in multilinguals' repertoire constitute dynamic systems undergoing continuous change (Kroll et al. 2012, Sorace 2020)
- **Cross-language interactions** persistent from the very onset of multiple language learning (Kroll 2020)
 - in different linguistic domains i.e. lexis, grammar, and phonetics/phonology
- Reconfiguration of cognitive network -> e.g. convergence between L1 and L2/Ln (Sorace 2020)

Dynamics of multilingualism

- L1 phonetic drift from the onset of L2 learning (Chang 2012)
- "L1 takes a hit" L1 performance on a lexical decision task altered even after brief exposure to L2/Ln (Kroll 2020)
- Passive language exposure in multilingual environment facilitates new language learning (Bice and Kroll 2015)
 - vowel harmony in an unfamiliar language in uni- vs. multilingual environment (Southern California > Pennsylvania) ERP study

Comparing bilingual and trilingual speech

- Traditionally: conflating bi- & multilingualism
- Evidence for distinctness (neuro-, psycholinguistics)
- Quantitative differences
- Qualitative differences
- Extended interactions between languages
- **Prior** linguistic knowledge
- More extensive previous learning experience
- Increased metalinguistic awareness
- Enhanced language learning strategies

(De Angelis, 2019)

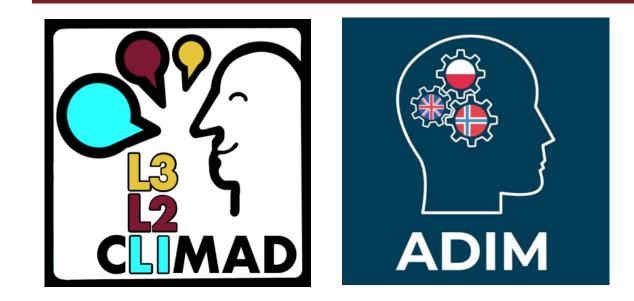
Comparing bilingual and trilingual speech

- Cross-linguistic Influence (CLI)
- Enhanced perceptual sensitivity
- Facilitation in learning new phonologies
 - Increased metalinguistic awareness
 - Trilingual advantage (potential)

Cross-linguistic Influence (CLI)

- Quantitative differences
- SLA: L1-based transfer (one-to-one)
- TLA: multidirectional & complex CLI
 L1⇔L2, L1⇔L3, L2⇔L3 ...
- Qualitative differences
- L1-based CLI in L2/L3 (due to established neuro-motor routines)
- L2-based CLI in L3 (interaction of two non-native languages, 'foreign language effect', 'lateral CLI' (Jarvis & Pavlenko, 2008)

Cross-linguistic Influence (CLI)


- Combined L1 & L2 CLI
 - L1-L2 hybrid values in L3 VOT (e.g. Cardoso & Collins 2010, Dittmers et al., 2018, Wrembel 2015 for L3 French)
- Mixed CLI Archibald (2022) L1 Arabic, L2 French, L3 English
 - CLI from L2 French for L3 English vowels
 - CLI from L1 Arabic for L3 English consonants
- Structure-dependent CLI Domene Moreno (2021): German-Turkish heritage speakers learning L3 English
 - perception of vowel length and laterals: Turkish-based CLI
 - production of consonant clusters and vowel length: German-based CLI

Facilitation in learning new phonologies

- Trilingual advantage found in some studies might not reflect a general advantage in phonological acquisition
 - Antoniou et al., 2015; Enomoto, 1994; Onishi, 2016
- Rather: L3/Ln learners can benefit from specific phonological properties of their background languages
- For more -> Gut & Wrembel (forthcoming) "Comparing Bilingual and Trilingual Phonetics and Phonology" in CUP Handbook of Bilingual Phonetics and Phonology (ed. Amengual 2023)

INSIGHTS FROM L3 PROJECTS

FAR study Perception study Processing study (ERP)

CLIMAD study design

- Three data collection times (T1, T2, T3)
 - T1 in November 2021
 - T2 in March 2022
 - T3 in June 2022
- Three sessions
 - speech production (vowels, VOT, sibilants/retroflexes)
 - speech perception (as above)
 - grammaticality judgements (syntactic features)
- Fieldwork mode
- L3 vs. L1, L2 language blocks (different days)

INVESTIGATING PREDICTORS OF FOREIGN ACCENTEDNESS IN L3 ACQUISITION

Magdalena Wrembel, Kamil Kaźmierski, Katarzyna Dziubalska-Kołaczyk, Zuzanna Cal and Jarosław Weckwerth, 2023

wa.amu.edu.pl

Study design: participants

Speakers (N=24)

- L1 Polish, L2 English, L3 Norwegian
- aged 21
- 8 weeks of intense initial exposure to the L3 in a formal setting

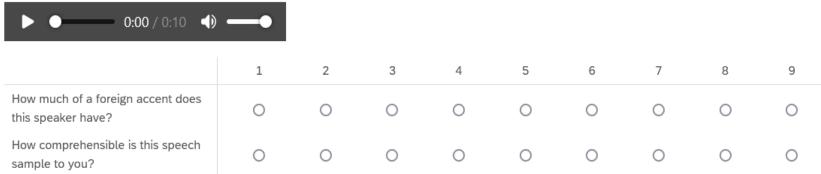
Raters (N=30)

- 18 Norwegian native speakers
- 12 highly proficient L2 speakers of Norwegian
- some phonetic training
- moderate to considerable previous experience with foreign-accented speech in Norwegian.

Study design: speech samples

- Excerpts from *The North Wind and the Sun*
- Read in L3 Norwegian
- 48 words long
- 30 samples
 - 24 L3 learners
 - 6 Norwegian controls
 - presented to the raters in a randomized order

Online rating survey in Qualtrics


Rate the following speech sample according to the questions below, feel free to use the whole scale:

Q1: How much of a foreign accent does this speaker have?

1 = No foreign accent | 9 = Strong foreign accent

Q2: How comprehensible is this speech sample to you?

1 = Very comprehensible | 9 = Not comprehensible at all

- L3 Proficiency: Norwegian placement test
- Amount/frequency of L3 use: a composite score based on self-declared answers in LHQ
- **Oral reading fluency**: number of words per minute (wpm)
- Fine-grained phonetic performance: VOT durations in /p, t, k/ in word list reading in L3
- **Profile**: Language History Questionnaire (Li et al. 2006)
- Rating parameters (on a 9-point scale):
 - degree of foreign accentedness
 - comprehensibility

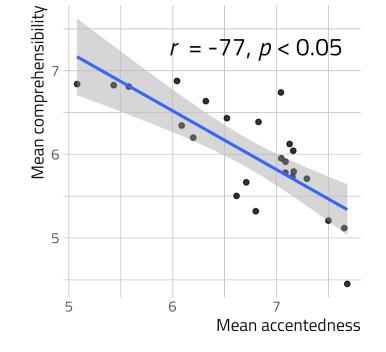
Research questions

- **RQ1:** Do the rating parameters (accentedness and comprehensibility) correlate?
- **RQ2:** Does perceived global accent correlate with the learners' proficiency level, oral fluency and fine-grained phonetic performance in the L3?
- **RQ3:** Does perceived comprehensibility correlate with the learners' proficiency level, oral fluency and fine-grained phonetic performance in L3 Norwegian?

Results

Parameters	Experimental group M (SD)	Control group M (SD)
Accentedness (1–9)	6.72 (1.8)	1.5 (1.5)
Comprehensibility (1–9)	6.03 (2.3)	7.8 (2.7)
Oral fluency (wpm)	0.05 (0.01)	-
VOT /p/ (ms)	44 (14)	-
VOT /t/ (ms)	62 (15)	-
VOT /k/ (ms)	74 (18)	-
Norwegian use (hrs/week)	4.2 (4.6)	_

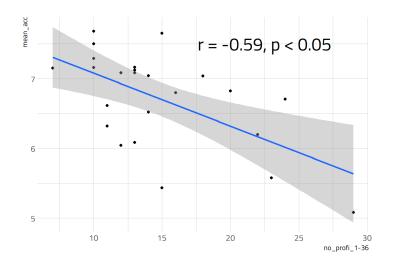
UAM Faculty of English, wa.amu.edu.pl

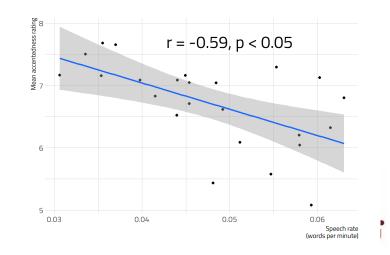

Significant correlation between Accentedness and

Comprehensibility

• The stronger the accent, the lower the comprehensibility

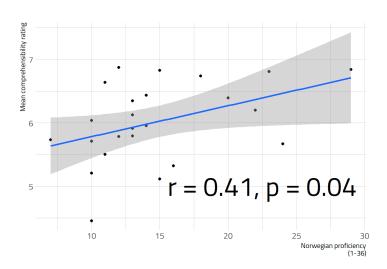
Results: Accentedness vs. comprehensibility


• RQ1 – YES

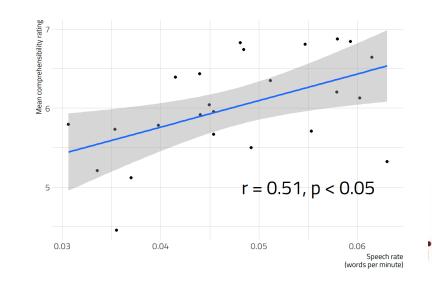

•

Results: Accentedness vs. factors

- Accentedness and L3 Proficiency
- No correlations between perceived foreign accent and VOT measures

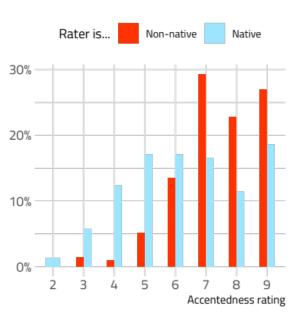


- Accentedness and Oral Fluency
- The higher the speech rate, the less accented it is perceived to be
- RQ 2 -> partially yes


Results: Comprehensibility vs. factors

- Comprehensibility and L3 Proficiency
- No correlations between perceived Comprehensibility and VOT measures

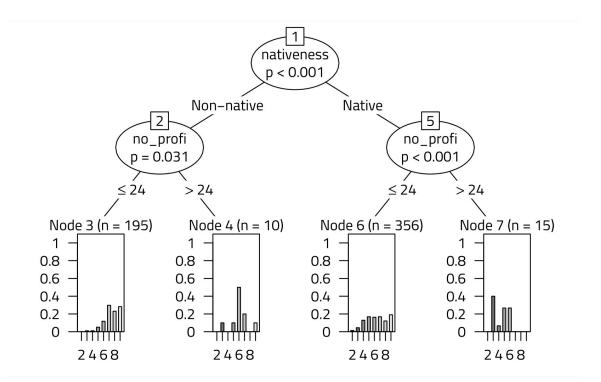
- Comprehensibility and Oral Fluency
- The higher the speech rate, the higher the comprehensibility rating


RQ 3 -> partially yes

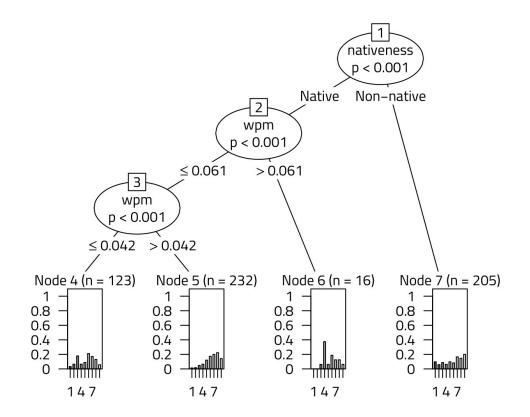
= 0.89; for

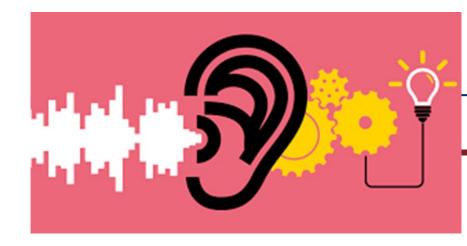
Results: rater variables

- Native vs. non-native speaker status significant for Accentedness but not Comprehensibility
- Mixed-effects ordinal logistic regression model: Accentedness as a function of Nativeness of Rater, with Norwegian Proficiency as control, and by-speaker and by-rater random intercepts
- Interrater reliability: Cronbach's alpha for Accentedness α = 0.89; for Comprehensibility α = 0.87



Results: importance of predictors for Accentedness


• A random forest analysis


UAM Faculty of English, wa.amu.edu.pl

Results: predictors for Comprehensibility

- Conditional importance of predictors for Comprehensibility

Perception in L2 and L3: The relationship between English and Norwegian vowel assimilation patterns and the Euclidean distances

Anna Balas, Magdalena Wrembel, Jarosław Weckwerth, Kamil Kaźmierski, Zuzanna Cal, Karolina Rataj

PERCEPTION STUDY

wa.amu.edu.pl

Aim & rationale

- To explore the relationship between L2 and L3 perception and acoustic distance between the vowels operationalized as Euclidean distance
- To examine perceptual assimilation patterns for L3 Norwegian and L2 English vowel assimilated to L1 Polish vowel categories
- So far studies focused on
 - L2 perceptual assimilation (Best & Tyler 2007, Tyler et al. 2014),
 - relationship between vowel perception and their acoustic parameters (Strange et al. 2003, Escudero et al. 2012, Alispahic et. al. 2017)
- No previous such studies on L3 nor comparing L2 and L3

Hypotheses

- H1: The smaller the Euclidean distance between two vowels, the higher the likelihood of assimilating a given L2 English/L3 Norwegian vowel to an L1 Polish vowel category.
- H2: The Euclidean distance predicts assimilation better in L3 than L2.
- H3: If we take into account the Euclidean distance, L2 vowels should be perceived as worse exemplars of L1 categories than L3 vowels.

słabo) 1 - 2 - 3 - 4 - 5 - 6 - 7 (dobrze)

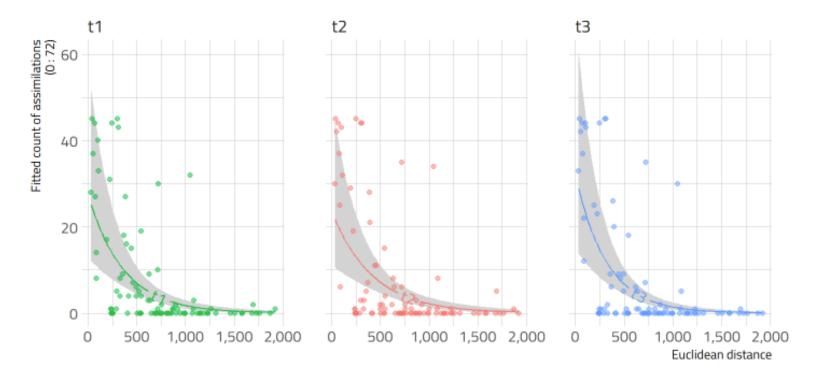
Methodology

Perceptual assimilation task

- 10 English and 16 Norwegian monophthongs to six Polish vowel categories (orthographic labels)
- Two language blocks, on separate days
- Goodness of fit ratings
 - Likert scale from 1 to 7
 - -1 (weak fit) -- 7 (good fit)
- Stimuli: embedded in /dVd/
- Randomised, 3 repetitions
- Run in PsychoPy (Peirce et al. 2019)

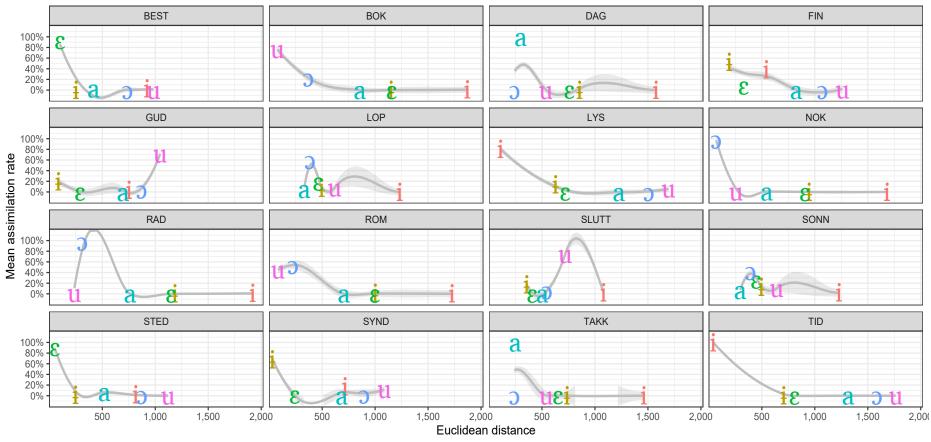
ije do wybrane

Norwegian stimulus	Polish vowel targets							
	/i/ <i></i>	/i/ <y></y>	/ɛ/ <e></e>	/a/ <a>	/ɔ/ <0>	/u/ <u></u>	NA	
/i:/ TID	100% (5.77)							
/i/ FIN	33.33% (5)	37.50% (5.41)	26.39% (5.21)			1.39% (3)	1.39% (4)	
/y:/ LYS	70.83% (4.59)	23.61% (5)	1.39% (1)			4.17% (4.33)		
/y/ SYND	16.67% (5.25)	62.50% (4.64)	8.33% (5.17)		2.78% (5)	8.33% (2.33)	1.39%	
/e:/ STED			88.89% (5.14)	6.94% (5.6)	1.39% (2)		2.78% (4)	
/e/ BEST	1.39% (2)		93.06% (5.9)	5.56% (5)				
/ø:/ LØP		9.72% (3.57)	19.44% (5.14)	5.56% (3.75)	58.33% (4.45)	6.94% (3.2)		
/ø/ SØNN		11.11% (3.25)	36.11% (4.35)	8.33% (5)	33.33% (4.29)	6.94% (3.2)	4.17% (5.33)	
/a:/ DAG				100% (5.53)				
/a/ TAKK				98.61% (5.69)			1.39% (4)	
/o:/ RÅD	1.39% (5)				97.22% (5.25)	1.39% (7)		
/o/ NOK					98.61% (5.58)		1.39%	
/u:/ BOK					38.89% (5.43)	61.11% (5.02)		
/u/ ROM					72.22% (5.08)	27.78% (4.9)		
/ʉː/ GUD	2.78% (7)	18.06% (4.23)	1.39% (1)		1.39% (5)	75% (4.72)	1.39% (5)	
/ʉ/ SLUTT	1.39% (3)	23.61% (4.12)			9.72% (5)	63.89% (4.65)	1.39% (7)	


English stimulus	Polish vowel targets						
	/i/ <i></i>	/i/ <y></y>	/ɛ/ <e></e>	/a/ <a>	/ɔ/ <o></o>	/u/ <u></u>	NA
/i:/ FLEECE	100% (5.81)						
/1/ KIT	37.5% (5.04)	34.72% (5.84)	27.78% (6.15)				
/e/ DRESS			98.61% (6.03)	1.39% (5)			
/æ/ TRAP				100% (5.75)			
/ʌ/ STRUT			13.89% 5.3	75% (5.13)	11.11% (4.5)		
/aː/ PALM				97.22% 5.53	1.39% (6)	1.39 ^[1] (4)	
/ɔː/ THOUGHT				97.22% (5.67)	1.39 (3)	1.39 (5)	
/uː/ GOOSE						100% (5.15)	
/υ/ FOOT	1.39% (7)	4.17% (4.67)			43.06% (4.61)	51.39% (3.86)	
/æː/ NURSE	15.28% (4.09)	15.28% (2.64)	54.17% (4.62)	4.17% (1.33)	6.94% (4.8)	4.17% (6)	

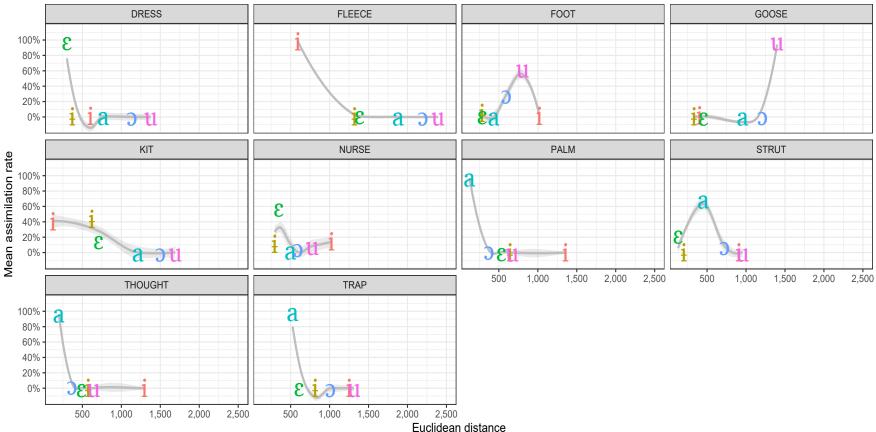
Results: Euclidian distance & assimilations

Norwegian vowels


Effect of Euclidean Distance over time

Assimilation rate as a function of ED: L3 Norwegian

Assimilation Rate (AR) as a function of Euclidean distance


AR averaged over time points and participants

Smooths based on within participant within time point assimilation rates

Assimilation rate as a function of ED: L2 English

Assimilation Rate (AR) as a function of Euclidean distance

AR averaged over time points and participants

Discussion: H1

- A negative binomial model to capture whether F1-F2 Euclidean distance is related to how often a given L2 Eng / L3 Nor vowel is assimilated to a given L1 Polish vowel
 - ED is negative and significant (z = -6.751, Pr(>|z|)
 - = 1.46e-11***) for L2 & L3
 - T1 the strongest effect in both L2 and L3
- H1: The larger the Euclidean distance, the fewer assimilations predicted

Discussion: H2

- Stronger effect of the ED L3 than L2
 - coefficient in Nor ed_z = -1.7 > Eng ed_z = -0.61,
 - assimilations in the better-known L2 English have stabilized
 - Due to more experience in L2 than L3, the learners discern the differences between the L1 and foreign sounds
- H2: The Euclidean distance predicts assimilation better in L3 than L2

Discussion: H3

- Mixed effects linear model of **Liker rating** as a function of ED, language (L2, L3) and their interaction; by-participant random intercept.
- Larger Euclidean distance means lower **goodness of fit ratings** in both languages.
 - Significant effect of language: L2 English vowels seem more similar to L1 Polish vowels than L3 Norwegian vowels
- L2 English vowels are rated higher as better exemplars of L1 categories than L3 Norwegian vowels
- H3: NO!

Interim summary

- Perceptual targets in L3 phonology largely modulated by Euclidean distance
- The perceptuo-acoustic similarity patterns are not substantially restructured during the first year of L3 learning
- ED influences perception more in L3 Norwegian than in L2 English.
- L2 English vowels seem more similar to L1 Polish vowels than L3 Norwegian vowels.

Adam Mickiewicz University, Poznań

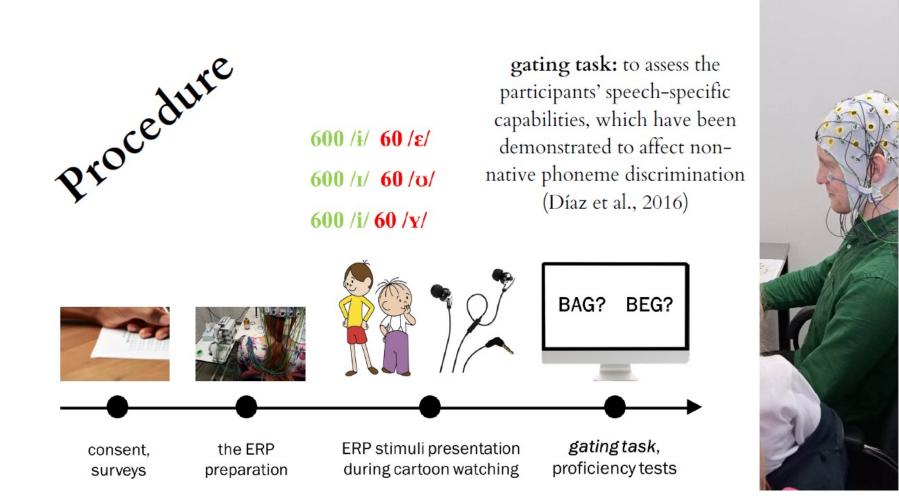
Faculty of English

Cross-linguistic influence in vowel processing in multilinguals

Hanna Kędzierska, Karolina Rataj, Anna Balas, Zuzanna Cal and Magdalena Wrembel

ERP STUDY

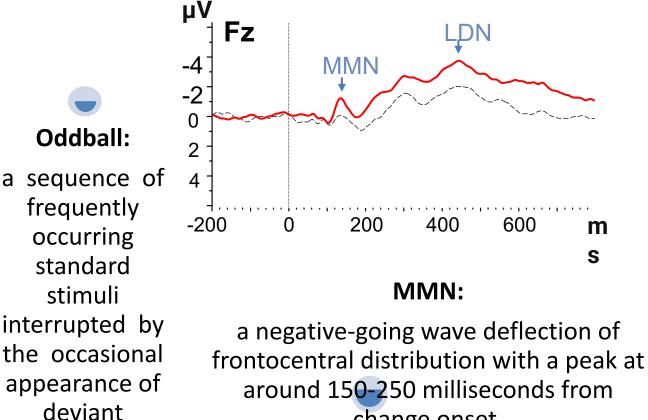
EEG study



- Aim: to examine non-native phonological contrasts perception and processing in L2 and L3
- RQ: Will phonological contrasts be equally easy to detect and process in L2 English and L3 Norwegian?
- **Predictions:** We predict the MMN to be stronger in native when compared with non-native speech
 - Jakobyet al., 2011; Liang & Chen, 2022; Näätänenet al., 1997; Song & Iverson, 2018
 - BUT the scale of the MMN effect in L2 vs. L3/Ln impossible to predict

-> NO previous studies which would focus on such a comparison

EEG study



UAM Faculty of English, wa.amu.edu.pl

Oddball paradigm

change onset.

600

m

S

P300 and LDN:

often following the MMN. **P300** is associated with switch of attention, LDN involves additional cortical resources to extract the difference.

stimuli)

Experimental stimuli

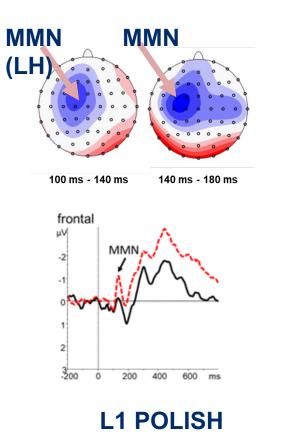
Polish: /ɨ/-/ε/ English: /ɪ/-/ʊ/ Norwegian: /i/-/ʏ/

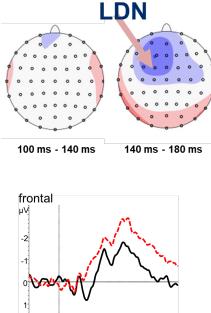
Vowel	F1	F2	F3	ED
/ɨ/	468	1948	2821	231
/ε/	675	1916	2722	
/1/	394	1828	2882	483
/ʊ/	390	1345	2896	
/i/	357	1917	2587	161
/٢/	313	2015	2708	

We used possibly similar standard sounds in Polish, English and Norwegian.

The deviant sound were selected to be languagespecific with approximately comparable distance from the standard one.

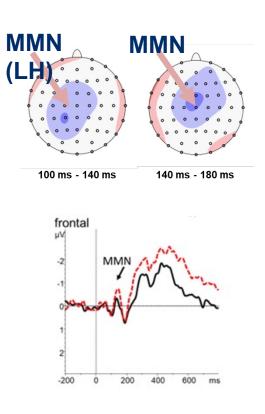
EEG study




• 2 groups – diverse acquisition settings

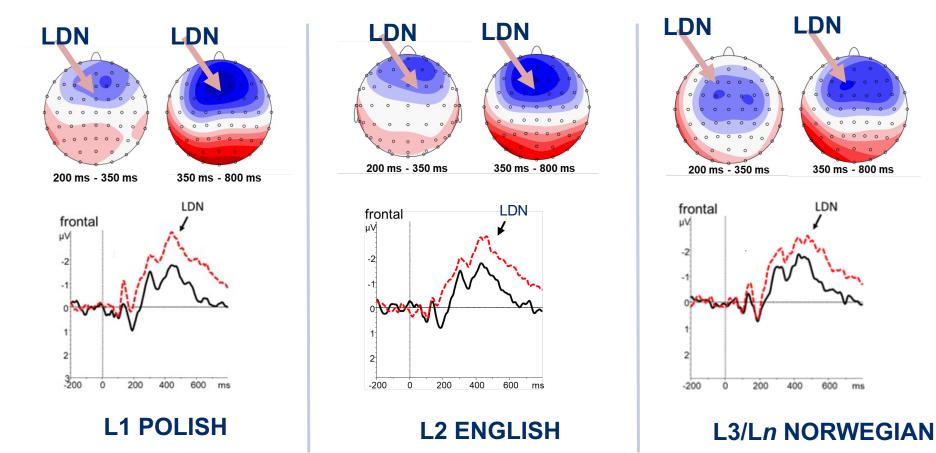
- Formal learners in Poland (N=24)
- Naturalistic learners in Norway (N=21)

ERP results: MMN


-2 µV 0 µV 2 µV

2 -200 Ò 200 400 600 ms

L2 ENGLISH



L3/Ln NORWEGIAN

ERP results: LDN

-2 µV 0 µV 2 µV

UAM Faculty of English, wa.amu.edu.pl

Discussion: prediction testing

- Will phonological contrasts be equally easy to detect and process in **native and non-native** langauges?
- MMN response was deficient for non-native languages (L2 English, L3/Ln Norwegian) compared to L1 Polish -> in accordance with our hypothesis and previous studies
- Will any significant distinctions emerge in L3/Ln as opposed to L1 and L2?
- MMN emerged in L3/Ln Norwegian but not in L2 English
- LDN less pronounced in L3/Ln Norwegian when compared with L1 Polish (but not with L2 English)

Interrim summary

- We have **replicated previous findings** concerning the impaired phonemic perception in non-native languages
 - But the study extended beyond L2 to L3
 - Diverse acquisition settings: formal vs. naturalistic
- Foreign language status as L2 or L3/Ln modulates auditory language processing
- Results suggest the relevance of language proficiency and dominance as factors influencing phonemic perception mechanisms
 - correlation between the MMN magnitude in Norwegian and L3/Ln proficiency level, r(21) = 0.65, p = .02.

LnNOR CORPUS

The corpus of spoken Norwegian, English and Polish (native and non-native) used in semi-formal, controlled situations as well as (semi)spontaneous speech.

Tasks:

- a) word lists reading
- b) text reading (North wind and the sun)
- c) semi-spontaneous (MAIN picture description)
- d) spontaneous (story telling, eg childhood experiences etc.)
- word-aligned with orthographical transcriptions
- error tagging
- LaBB-CAT environment as well as UAM repository
- publicly available

LnNOR CORPUS

Language groups:

a) L1 Polish, L2 English, L3 Norwegian

- b) L1 Polish, L2 English
- c) L1 Norwegian, L2 English
- d) L1 Norwegian, L2 English, L3 Polish

So far:

- 119 speakers
- Ca 80 hrs recordings

LnNOR CORPUS

- Metadata:
- gender
- age
- language recorded
- other languages known by the speaker
- AoA of the recorded language
- proficiency
- acquisition/learning environment (formal vs. naturalistic or mixed)
- Participant profiles based on LHQ (Language History Questionnaire)

Pedagogical implications

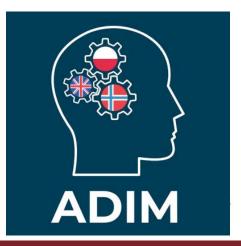
Highlighting cross-linguistic similarities / differences wrt phonetics

Promoting positive transfer (from L1, L2, Ln)

Increasing metaphonological awareness

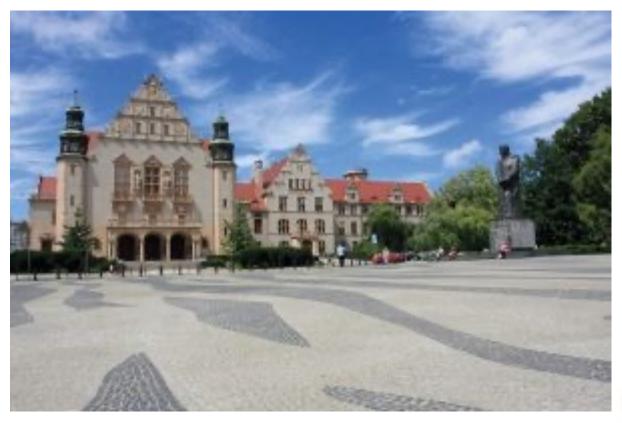
Promoting self-analysis and reflection

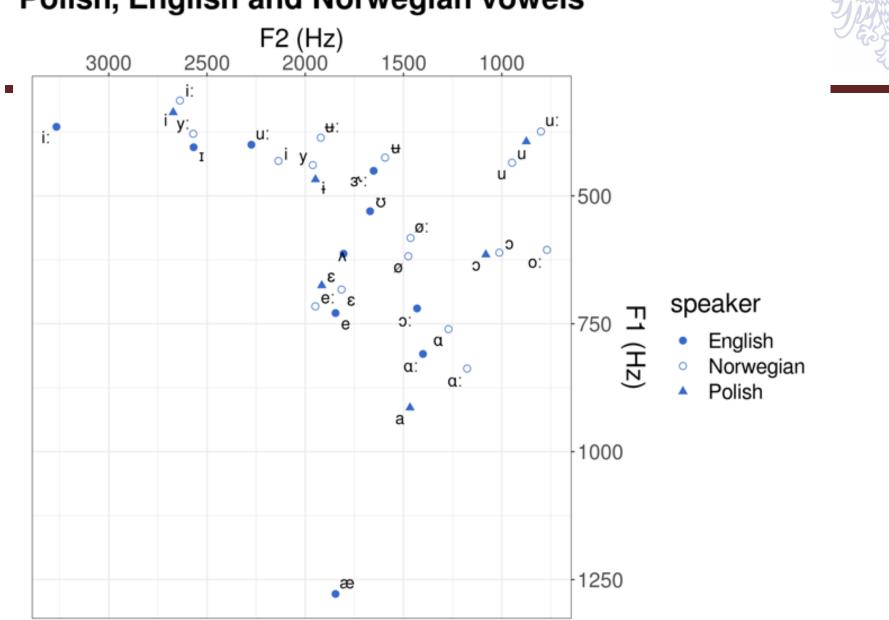
Relying on previous lingusitic knowledge and skills


Norway grants

Acknowledgements

- This research is supported by a grant of the Polish National Science Centre (NCN), **OPUS-19-HS project** (UMO-2020/37/B/HS2/00617), CLIMAD "Cross-linguistic influence in multilingualism across domains: Phonology and syntax"
- Norway funds/NCN grant GRIEG-1 (UMO- 2019/34/H/HS2/ 00495) ADIM "Across-domain investigations in multilingualism: ModelingL3 acquisition in diverse settings"


Thanks to the project team ©



Polish, English and Norwegian vowels

UAM Faculty of English, wa.amu.edu.pl

Vowel inventories

- Polish: /i i ɛ a ɔ u/
- English: /iː ɪ e æ ʌ ɑː ɒ ɔː ʊ uː ɜː ə/
- Norwegian: long vowels /iː, yː, ʉː, uː, eː, øː, oː, aː/ and short vowels /i, y, ʉ, u, e, ø, o, a/ (Kristoffersen 2000)

