

Perception of voicing distinction in syllable-initial stops by multilingual speakers Zuzanna Cal and Magdalena Wrembel zuzanna.cal@amu.edu.pl, magdala@amu.edu.pl

Poznań

Background

Limited data on VOT in multilingual acquisition:

- Liu & Cebrian 2019: regressive and progressive cross-linguistic influence of a newly acquired L3 on L1 and L2
- Liu & Lin 2021: low accuracy in the perception of L3 voiceless stops; learners were more accurate in perceiving voiced stops in L3 than in perceiving voiceless stops

VOT in Polish, English and Norwegian:

- **Polish:** true voicing language (prevoicing in /bdg/ and short-lag VOT in /ptk/) (e.g., Keating et al. 1981)
- English: aspirating language (partially voiced /bdg/ and aspiration in /ptk/) (e.g., Lisker & Abramson 1964)

Perception task: a two-alternative forced-choice (2AFC) task; participants were presented with one word from the continuum and asked whether they heard a voiced or voiceless consonant at the beginning

Administration: experiment conducted in PsychoPy in three separate sessions – one per language

Analysis: 1. Pearson's correlation for Accuracy~Response Time (RT); 2. Accuracy data transformed with logistic regression;

3. Boundary location calculated with -LN(b0)/LN(b7), b0 = constant and b7 = slope;

- 4. Linear Mixed Model:
- Dependent variable: perceptual boundary locations

• Norwegian: prevoicing in /bdg/ (in most cases) and aspiration in /ptk/ (e.g., Ringen & van Dommelen 2013)

RQs and predictions

RQ1: What are the patterns of VOT categorisation in multilinguals? Are they language- and PoA-specific?

Prediction 1: Multilingual advantage might trigger more languageand PoA-specific patterns of VOT categorisation (e.g., Kopečková 2015, Onishi 2016).

RQ2: What are the perceptual boundary locations for the perception of voiced and voiceless stops in all three languages? Do they point to potential sources of CLI? **Prediction 2:** Based on learning process and phonological similarity (e.g. Bardel & Falk 2007, Hermas 2010):

- Fixed factors: language (Polish, English, Norwegian), place of articulation (PoA; labial, coronal, velar)
- Random effect: participant

Results

- Moderate and strong negative correlations between accuracy and RTs across continua and languages \rightarrow the longer RT, the lower accuracy
- Some discrepancies in accuracy across L1/L2/L3 languages, especially visible in /b-p/ and /d-t/; but /g-k/ more consistent across languages (Figures 1-3)
- Significant main effects of Language (F=43.878, p<.001), PoA (F=108.036, p<.001) and their interaction (F=18.822, p<.001)
- /b-p/: stat. signif. differences between all three languages;
- /d-t/: stat. signif. differences between L1-L2 and L2-L3;
- /g-k/: stat. signif. differences between L1-L3 and L2-L3 (Figure 4)

		Scenario 1	Scenario 2		
L1-based CLI boundaries		L1=L3 at initial stages of language learning	L2=L3 in terms of foreign language learning process		L2-based CLI boundaries <u>later</u> in the continuum
<u>earlier</u> in the continuum		L1=L3 in voiced stops	L2=L3 in voiceless stops		

Study design

Participants: 19 L1 Polish L2 English L3 Norwegian speakers, aged 20, 14 females & 5 males; 8 weeks of intense initial exposure to the L3 in a formal academic settings

Instruments: LexTALE for English proficiency, Norwegian placement test, Language History Questionnaire (Li et al. 2006), perception experiment in PsychoPy (Peirce et al. 2019) in all three languages

5 Discussion & conclusions

RQ1: Language- and PoA-specific patterns of VOT categorisation in most cases – an indication of a multilingual advantage, according to which, multilinguals tend to discriminate in perception between the three languages and perceive subtle linguistic contrasts

Prediction 1 mostly confirmed

Stimuli: <u>9 VOT continua</u> – <u>3 per language and place of articulation</u>, based on minimal pair words with word-initial stop sounds; ranges based on the values obtained from native speakers' recordings in all three languages; each step differed from the other by 10 ms

	Polish	English	Norwegian
b-p	-90 - 30 ms	0 - 70 ms	-140 - 80 ms
	(13 steps)	(8 steps)	(23 steps)
d-t	-130 - 20 ms	0 - 90 ms	-130 - 90 ms
	(16 steps)	(10 steps)	(23 steps)
g-k	-80 - 60 ms	0 - 70 ms	-140 - 90 ms
	(15 steps)	(8 steps)	(24 steps)

- **RQ2:** confirmation of Scenario 1 only in /d-t/ continuum, as there was no stat. signif. difference between L1-L3- possible interdependence between the two languages
- No stat. signif. difference between L1-L2 in /g-k/- possible, unexpected, interactions between L1 and L2
- No other traces of CLI attested in the data possible role of multilingual advantage

Prediction 2 mostly disconfirmed

ACKNOWLEDGEMENT

This research is supported by a grant of the Polish National Science Centre (NCN) OPUS-19-HS (UMO-2020/37/B/HS2/00617) CLIMAD: "Cross-linguistic influence" in multilingualism across domains: Phonology and syntax".

REFERENCES

- Bardel, C., & Falk, Y. 2007. The role of the second language in third language acquisition: the case of Germanic syntax. Second Language Research 23, 459–484.
- Hermas, A. 2010. Language acquisition as computational resetting: verb movement in L3 initial state. Int. J. Multilingual 7, 343–362.
- Keating, P., Mikos, M., Ganong III, W. 1981. A cross-language study of range of VOT in the perception of stop consonant voicing, J. Acoust. Soc. Am. 70, 1260–1271.
- Kopečková, R. 2015. Differences in the perception of English vowel sounds by child L2 and L3 learners. In: U. Gut, R. Fuchs, E.-M. Wunder (eds.), Universal or diverse paths to English phonology. Mouton de Gruyter, 71–90.
- Li, P., Zhang, F., Yu, A., Zhao, X. 2020. Language History Questionnaire (LHQ3): An enhanced tool for assessing multilingual experience. Bilingualism: Language and Cognition 23, 938–944.
- Lisker, L., Abramson A. 1964. A cross-language study of voicing in initial stops, Word 20, 384–422.
- Liu, Z., Gorba, C., Cebrian, J. 2019. Effects of learning an additional language on VOT perception. Proc. 19th ICPhS Melbourne, 260–254.
- Liu, J., & Lin, J. 2021. A cross-linguistic study of L3 phonological acquisition of stop contrasts. SAGE Open 11.
- Onishi, H. 2016. The effect of L2 experience on L3 perception. Int. J. Multilingual. 13, 459–475.
- Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Höchenberger, Sogo, H., Kastman, E., Lindeløv, J.K. 2019. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods 51, 195–203.
- Ringen, C., Dommelen, W.A. 2013. Quantity and laryngeal contrasts in Norwegian. J. Phonetics 41, 479–490.